If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5t^2-45t+25=0
a = 5; b = -45; c = +25;
Δ = b2-4ac
Δ = -452-4·5·25
Δ = 1525
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1525}=\sqrt{25*61}=\sqrt{25}*\sqrt{61}=5\sqrt{61}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-45)-5\sqrt{61}}{2*5}=\frac{45-5\sqrt{61}}{10} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-45)+5\sqrt{61}}{2*5}=\frac{45+5\sqrt{61}}{10} $
| 3y+5y-y= | | 47−(3b−(9−5b))=8(7−b) | | 3x*2x=50 | | 6(x-5)=3(2x+3) | | x0.9=0.09 | | 1^x=1.36 | | 3a-9=6a | | (x-3)^2=30 | | 3x-15/2x=3 | | 10x+40-4=65 | | 10x-40-4=65 | | ((2x-3)(x+5))/(x-7)=0 | | 60i/12i=0 | | 28−v=−42 | | x5=7776 | | 11x+4=6x+11 | | (2+v)(5v+9)=0 | | (2v+v)(5v+9)=0 | | x^2–1x–20=0 | | 5(2n+-3)=-30 | | x2+1x–2=0 | | 3x-45-10+13=0 | | (7x-5)(x+43)=0 | | 4=(x/5)-9 | | 4=x/5)-9 | | 3w×w=75 | | 10x-5=2x+23 | | (x/2)+40=51 | | 4a2+28a+49=0 | | 4z+7=2z+7 | | √(3x+24=) | | 6y+5y+1=45 |